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the corresponding resistance of the normal-

ized design. Similarly, let Q* be the radian

frequency of the upper 3-dB frequency of

the desired operating band, while @b’= 1 is

the corresponding frequency for the nor-
malized design. Then the scaled element

values are computed using

and where k,= YO,/ I’O is the nortnalized
characteristic admittance of the rth stub.

For example, in a tww-stub filter, n =2,

and symmetry demands that the charac-
teristic impedances of the two stubs be
equal, hence

For convenience, tiO’ in (8) is given in

tabular form in Table 1 for several \alues of

r and n.

TABLES OF PROTOTYPE ELEMENT VALUES4

Tables 2 to 6 (p. 694) give element values

for prototype maximally flat impedance-

transforming networks for ?2=2, 4, 6, 8,

and 10 reactive elements. After the de-

signer has arrived at values frn-~, TV, and n,
the normalized element \,alues can be ob-

tained from the tables. Since the networks

presented in Tables 2 through 6 are anti-
metric [3], i.e., half of the nettvorlc is the
inverse of the other half, only half of the
network element values need be presented;
the remaining elements can be computed
from single equations [2]. However, for the

convenience of the reader, all element values
of the networks are presented in Tables 2
through 6.5

(11)

The insertion loss is gil,en by ( 1),

Thefollowiugt zblesgive 10log Kn, and
the required normalized characteristic ad-
mittances of the stubs for various pr,~ctical

values up to ten stubs. Since the filters are
symmetrical, only the values for the first

half of the iilter are tabulzted.

~vhere RL’, C~’, and Ll,’are forthenormdized

design and Rk, Ck, and Lkarefor the scaled
design.
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EXAMPLE
‘Three-Stub Filter

———_———

10 log K, kj kz
A numerical example will serve to dem-

onstrate the use of Tables 2 through 6

and Fig. 3, and Table 1. Suppnse that a
designer desires a maximally flat impedance-

transforming network for an 7=20 im-
pedance ratio, over the band from 500 to
1000 Me/s. The required fractional band-
\vidth is given by
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From Fig. 3, it is found that this value of
fractional bandwidth and impedance ratio

lies between the n=2 and n=4 curves, so

that i-L=4 reactive elements are necessary.
(Two reactive elements would give a frac-
tional bandwidth of only 0.5. ) This will give

an operating bandwidth somewhat larger

than is actually required (w= O.79), which
is often desirable.

N-ext, from Table 3, for rz=4 reactive

elements, the element values

—-—. —

Five-Stub Filher
—

10 log ?G k, ki k:,
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10.058

Tables of Stub Admittances for

Maximally Flat Filters Using )

Shorted Quarter-Wave Stubs

g, = 2.56209

gz = 0.64144

g, = 12.82873
Consider a symmetrical filter consisting

of lossless shorted quarter-wave stubs spaced

a quarter wavelength apart on a uniform,

lossless line. The tables given here list the

normalized characteristic stub admittances

k. necessary for a maximally flat response.
The insertion loss, when the filter is in-

serted between a generator and a load, both

of which have real admittances equal to the
characteristic admittance of the transmis-
sion line, is given by tbe relation

g, = 0.12810
—

are obtained; and from Table 1 [or (9)] ao’

is found to be 0.77012. The computed trans-

mission response of the network is graphed
in Fig. 4.

Slx-Stllb FdtW
—.
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SCALING OF THE NORMALIZED DESIGN

After a designer has selected a normal-

ized design, the element values required for
a specific application are easily determined

by scaling. Let R be the desired resistance
level of one of the terminations, while R’ is

P, COS2’ e
_=l+~-n—

PL

(1)
sin2 6’

where n is the number of shorted stubs of
length 1,

e = 2rrl/k (2)
Seven-Stllb Filter4 The derivation of the tables is given in Cristal,

et al. [41.
s The element values were obtained by a continued

fraction expansion of the input impedance of the net-
work. Because of a loss of significant digits in the con-
tinued fraction expansion, the element values for
second half of the network as given in the tables may
be in error in the fourth decimal place. In those cases
where the error is significant the element values of the
second half of the network should be obtained from
the element values of the first half of the network by
the relationships given in Matthaei [2].
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Eight-Stub Filter

37.11 0.1 0.480 1.050 1.455
53.35 0.2 0.860 1.735
73.35 0.4

2.305
1.543 2.881 3.691

98.06 0.8 2.802 4.885 6.080
107.14 1.0 3.409 5.829 7.199
128.19 1.6 5.189 8.562 10.433
139.08 2.0 6..359 10.340 1.2 5..5

50.68 0.1 0.4974 1.138 1,689 1.898
69.02 0,2 0.8838 1.852 2.613 2.890
91.56 0.4 1.577 3.043 4.112 4,.s91

119.39 0.8 2.851 5.121 6.688 7.237
129.6 1.0 3.456 6.098 7.894 8.251
153.3 1.6 5.266 8.928 11.377 12.231
176.0 2.4 7.624 12,592 15.879 17.022

Ten-Stub Filter

10 log K,o bl hz k, k~ kt

65.24 0.1 0.510 1.203 1.866 2.245
85.66 0.2 0.901 1.938 2.842 3.340

110.753 0.4 1.601 3.161 4.423 5.102
141.69 0.8 2.887 5.292 7.138 8.117
153.07 1.0 3,506 6.294 8.408 9.257
179.39 1.6 5.322 9.195 12.076 13.596
204.651 2.4 7.699 12.949 16.815 18.851
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A Simple Design Procedure for

Small Percentage Bandwidth

Round-Rod Interdigital Filters

The continued correspondence concern-
ing interdigital filter [1 ] prompted me to
submit this correspondence. The concepts

and design procedures to be described have

been found to be practically useful for de-
termining the geometry of the coupled-rod
structure, and because these procedures are

apparently much simpler than those pres-
ently available, publication of the subject
matter may be helpful to others. It will be

~pP.arent that some of this material is tutor.
lal m nature-it is included to clarify the
other information being presented.

1. CONCERNING THE OVERALL DEVICE

However else the device may be de-
scribed, when used to produce small per-

centage, i.e., less than 10 per cent, pass
bands, the first-order phenomenon involved
in a so-called interdigital filter is identical to

that occurring in direct coupled-resonator
filters with grouudings arranged so that the
magnetic field coupling is in phase with the

electric field coupling; i.e., the so-called
“capacity aiding” connection in the n = 2 IF
interstages of old. Thus, the concepts and
quantitative procedures described in [2] are

Manuscript received May 24, 1965; revised June
2, 1965.

directly applicable to the design, adjust-

ment, and alignment of these filters. Specifi-

cally the device is adequately designed if,

with all other resonances short-circuited,
one correctly adjusts the coefficients-of-
couplings between adj scent resonances; the
singly loaded Q of the input and output reso-
nances; and the resonant frequency of each
resonance.

If the foregoing is true, the following

helpful questions arise:

1) Why should one bother using different

diameter rods (or different width rectangu-
lar bars) in the filter?

2) Why should one waste the space to

put in rods #O and #(n+ 1) the only purpose
of which is to properly couple the resistive

generator and resistive load to the input and
output resonances, respectively ?

The answer to the first question is ap-
parently that different diameter rods and

different width bars are used because the
presently available designs call for them.

.lctually there are an infinite number of

correct diameter and spacing combinations,

and there is no need to use different di-

ameter rods (or different width bars) if the
filter is correctly designed and adjusted for

uniform diameter rods (or uniform width

bars). Section III gives the simple design
procedure involved.

The answer to the second question also
is that apparently rods #O and #(n+ 1) are

used because the presently available designs
call for them. Actually in the bandwidth
regions considered in this correspondence

these rods are not required. In the less than

one percent bandwidth region, probe or loop
coupling of the generator to resonator #1,

and the load to resonator #n is practical;
and in the greater than one percent band-

width region, tapping of the generator onto
rod +1, and tapping of the load onto rod #n,

is a practical way of producing the required

singly loaded Q for the input and output
resonators. Section IV gives the simple

design procedure involved when tapping is
used.

II. THE COEFFICIENT-OF-COUPLING

BE’rWEEN ADJACENT UNIFORM
DMMETER RODS

The definition of coefficient-of-coupling

(K) applicable to all small percentage band-
width coupled-resonator filters is given in
Section IV of [2]; also given there is a

straightforward experimental procedure for
accurately measuring and/or adjusting K.
This procedure applied to an actual filter
for which d/h = 0.5 resulted in the three
cross-marked points on the graph of Fig. 1.
The K measured was that between two adja-
cent rods which also had equally spaced
rods on their other sides; thus, equal far-
side coupling was involved.

Within their applicable ranges, either
Honey’s closed-form equations for Zoe and
Z.. [3], or Cristal’s graphs for C~/e and
C/e [4] can be used to calculate the coeffi-
cient-of-coupling resulting from a given

geometry d/h and c/h. It should be noted
that the small percentage coupling case
herein considered is very forgiving of a
multitude of approximation sins, and per-
haps a proof of this ig the fact that for the
less than 10 percent coupling case consid-

ered herein, and for normalized rod di-
ameters less than d/h =0.5, both procedures
give ‘(exactly, ” i.e., within about 2 per cent,

the same numerical answers. If Honey’s

approximation is used, (1) gives the K be-
tween a pair of rods

If Cristal’s graphs are used, (2) is used

to obtain the h- between a pair of rods

The graph of Fig. 1, giving the coeff -
cient-of-coupling between two adjacent rods
as a function of normalized center to center
rod spacing c/h, and normalized rod di-

ameter d/k, results from an application of

either (1) or (2). The very excellent agree-

ment on Fig. 1 between the three experi-
mentally determined cross-marked points,

and the line for d/h = 0.5, is gratifying.

As Fig. 1 indicates, in this region of in-

terest, the log of the coefficient-of-coupling
is almost a linear function of both the nor-
malized center to center spacing (c/h) and
the normalized rod diameter (d/k). A linear

equation approximating the straight, al-
most equally-spaced lines of Fig. 1 is given
in (3),

+091(3-00481‘3)
As presented, the equations and graph of

Fig. 1 apply exactly only to the case of equal

( C~/ C) on each side of every equal diameter
rod. In a ~<modern network-theory filter”
this is, of course, not the case; however, for
small percentage couplings the foregoing
simple equations and graph can still be used

to design such au unequal Cn filter, using

equal diameter rods, because of the following
fundamental fact: Fringing phenomenon is
such that, when the spacing between rods is

changed, the YO of any one line with all other
lines short-circuited, e.g. ( Y02, + y,, + Yo$,),

changes negligibly; e.g., even with spacing
changes such that the resultant coefficient

of coupling changes from zero up to 10 per-
cent, there is less than 3 percent change in
this P“O, even for d/h as Iarge as 0.5. The

value of this essentially constant Y“ is very
closely that for a single rod between parallel
ground planes given by (4) (page 592 of

[51).
4 A

()
Y, & 1/138 log ~ ; (4)

Thus, up to 10 percent couplings, the
factor ( C,/e 2 C~/e) in the denominator of

(2) is essentially independent of changes in
rod spacing; and to a first-order the numeri-

cal value for the corresponding numerator of
(2), i.e. ( C~/e), is still obtainable from
Cristal’s Fig. 2 [4], even for unequally spaced
rods on each side of a given pair.

It should be noted that a graph similar

to Fig. 1 but differing by the factor 4/7r, has


