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For convenience, w’ in (8) is given in
tabular form in Table 1 for several values of
rand .

TaABLEs OF PROTOTYPE ELEMENT VALUES!

Tables2 to 6 (p. 694) give element values
for prototype maximally flat impedance-
transforming networks for =2, 4, 6, 8,
and 10 reactive elements. After the de-
signer has arrived at values for », W, and »,
the normalized element values can be ob-
tained from the tables. Since the networks
presented in Tables 2 through 6 are anti-
metric [3], i.e., half of the network is the
inverse of the other half, only half of the
network element values need be presented;
the remaining elements can be computed
from single equations [2]. However, for the
convenience of the reader, all element values
of the networks are presented in Tables 2
through 6.5

EXAMPLE

A numerical example will serve to dem-
onstrate the use of Tables 2 through 6
and Fig. 3, and Table 1. Suppose that a
designer desires a maximally flat impedance-
transforming network for an r=20 im-
pedance ratio, over the band from 500 to
1000 Mc/s. The required fractional band-
width is given by
=t 20— 1) (10)
Sm fotfa

which for this example gives

~2(1000 — 500)
~ 1000 + 500

= 0.667.

From Fig. 3, it is found that this value of
fractional bandwidth and impedance ratio
lies between the n=2 and #=4 curves, s0
that n=4 reactive elements are necessary.
(Two reactive elements would give a frac-
tional bandwidth of only 0.5.) This will give
an operating bandwidth somewhat larger
than is actually required (w=0.79), which
is often desirable.

Next, from Table 3, for =4 reactive
elements, the element values

g = 2.56209
g2 = 0.64144
g = 12.82873
g = 0.12810

are obtained; and from Table 1 [or (9)] wo’
is found to be 0.77012. The computed trans-
mission response of the network is graphed
in Fig. 4.

SCALING OF THE NORMALIZED DESIGN

After a designer has selected a normal-
ized design, the element values required for
a specific application are easily determined
by scaling. Let R be the desired resistance
level of one of the terminations, while R’ is

4 The derivation of the tables is given in Cristal,
et al. [4],

5 The element values were obtained by a continued
fraction expansion of the input impedance of the net-
work. Because of a loss of significant digits in the con-
tinued fraction expansion, the element values for
second half of the network as given in the tables may
be in error in the fourth decimal place. In those cases
where the error is significant the element values of the
second half of the network should be obtained from
the element values of the first half of the network by
the relationships given in Matthaei [2].

CORRESPONDENCE

the corresponding resistance of the normal-
ized design. Similarly, let o, be the radian
frequency of the upper 3-dB frequency of
the desired operating band, while «w,’=1 is
the corresponding frequency for the nor-
malized design. Then the scaled element
values are computed using

R
Ry = Ry *R,) ay
wy \ R
Ce = G (——— — 12
k k s R ( )
wy' \ R
Ly ="Li (—— — 13
" Y\ ® (13)

where R;/, C}’, and L;’ are for the normalized
design and Ry, Ci, and L; are for the scaled
design.
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Tables of Stub Admittances for
Maximally Flat Filters Using |
Shorted Quarter-Wave Stubs

Consider a symmetrical filter consisting
of lossless shorted quarter-wave stubs spaced
a quarter wavelength apart on a uniform,
lossless line. The tables given here list the
normalized characteristic stub admittances
k, necessary for a maximally flat response.

The insertion loss, when the filter is in-
serted between a generator and a load, both
of which have real admittances equal to the
characteristic admittance of the transmis-
sion line, is given by the relation

Un
i=l+Kncos [ )

Py sin? @

where # is the number of shorted stubs of
length /,

8 = 2xl/\ 2)
. E}ik_Z‘}'z)"'(kn‘*_Z)Z
[‘"_( 2 ) ®)
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and where k.=Y,/1, is the norinalized
characteristic admittance of the rth stub.

For example, in a two-stub filter, n=12,
and symmetry demands that the charac-
teristic impedances of the two stubs be
equal, hence

11
B ks
The insertion loss is given by (1),
2oy It D costo
Py, 4 sin* 4

Ky = k(B + 2)]2/4.

The following tables give 10 log K, and
the required normalized characteristic ad-
mittances of the stubs for various practical
values up to ten stubs. Since the filters are
symmetrical, only the values for the first
half of the filter are tabulated.

Three-Stub Filter

10 log K3 ki1 ks

—~12.728 0.100 0 200
— 0.944 0.300 0.600
+ 5.46 0.500 1.000
+10.138 0.700 1 400
+15.56 1.000 2 000
—+21.156 1.400 2.800
+27.604 2,000 4.000
-+31.904 2.5 3.0

—+-35.563 3.0 60

Four-Stub Filter

10 log K« kr fea
-~ 5.17 0.1 0.292
-+ 3.253 0.2 0.57t
+13.329 0.4 1.109
+25.668 0.8 2.141
+35.909 1.3 3.395
+44.873 19 4.877
+56.734 30 7.568%
Five-Stub Filter
10 log K5 kL k2 kg
4+ 3.452 0.100 0.366 0.532
13.577 0.200 (.694 0.989
20.523 0.300 1.005 L.410
26.002 0.400 1.304 1.808
30.601 0.500 1.596 2.193
38.16 0.700 2.166 2.933
44 .324 0.900 2.724 3.048
54.172 1.300 3.819 5.038
66.970 2.000 5 702 7.403
77.874 2.800 7.829 10.058
Six-Stub Tilter
10 log & & k2 ks
+13.378 0.100 0.419 0 755
25.469 0.200 0.774 1.329
33.805 0.300 1.105 1 838
40.388 0.400 1.422 2.314
50.721 0.600 2,031 3.207
58.863 0.800 2.622 4.055
65.668 1.0 3.202 4.878
76.755 1.4 4.343 6.487
85.687 18 5.468 8.045
96 571 2.4 5 141 106.359
Seven-Stub Filter
10login K1 /1 k2 ks ks
24.63 01 0.4556 0 9269 1 1425
38.78 02 0.8259 L 5687 1 8656
56,24 04 1.4949 2.6514 3 1129
77.83 0.8 2.7308 4.55006 5.2396
85.77 1.0 3.3269 5.4458 6.2379
104.521 1.6 5.0774 9.0398 9.1249
125.521 26 7.9395 12,2306 13.7822
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Eight-Stub Filter
10logiy Ks k1 ke ks ks
37.11 0.1 0.480 1.050 1.455
53.35 0.2 0.860 1.735 2.305
73.35 0.4 1.543 2.881 3.691
98.06 0.8 2.802 4.885 6.080
107.14 1.0 3.409 5.829 7.199
128.19 1.6 5.18 8.562 10.433
1392.08 2.0 6.359 10.340 12 545
Nine-Stub Filter
10log Ky ki ks k3 ks ks
50.68 0.1 0.4974 1.138 1.689 1.898
69.02 0.2 0.8838 1.852 2.613 2.890
91.56 0.4 1.577 3.043 4.112 4.491
119.39 0.8 2.851 5.121 6.688 7.237
129.6 1.0 3.436 6.098 7.894 8.251
153.3 1.6 5.266 8.928 11.377 12.231
176.0 2.4 7.624 12,592 15.879 17.022
Ten-Stub Filter
10 log K19 %1 ke k3 R ks
65.24 0.1 0.510 1.203 1.866 2.245
85.66 0.2 0.901 1.938 2.842 3.340
110.753 0.4 1.601 3.161 4.423 5.102
141.69 0.8 2.887 5.292 7.138 8.117
153.07 1.0 3.506 6.294 8.408 9.257
179.39 1.6 5.322 9.195 12.076 13.596
204.651 2.4 7.699 12,949 16.815 18.851

W. W. MuMFORD
Bell Telephone Labs., Inc.
Whippany, N. J.

A Simple Design Procedure for
Small Percentage Bandwidth
Round-Rod Interdigital Filters

The continued correspondence concern-
ing interdigital filter [1] prompted me to
submit this correspoundence. The concepts
and design procedures to be described have
been found to be practically useful for de-
termining the geometry of the coupled-rod
structure, and because these procedures are
apparently much simpler than those pres-
ently available, publication of the subject
matter may be helpful to others. It will be
apparent that some of this material is tutor-
ial in nature—it is included to clarify the
other information being presented.

I. CoNCERNING THE OVERALL DEVICE

However else the device may be de-
scribed, when used to produce small per-
centage, i.e., less than 10 per cent, pass
bands, the first-order phenomenon involved
in a so-called interdigital filter is identical to
that occurring in direct coupled-resonator
filters with groundings arranged so that the
magnetic field coupling is in phase with the
electric field coupling; i.e., the so-called

- “capacity aiding” connection in the n=2 IF
interstages of old. Thus, the concepts and
quantitative procedures described in (2] are

Manuscript received May 24, 1965; revised June
2, 1965.
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directly applicable to the design, adjust-
ment, and alignment of these filters. Specifi-
cally the device is adequately designed if,
with all other resonances short-circuited,
one correctly adjusts the coefficients-of-
couplings between adjacent resonances; the
singly loaded Q of the input and output reso-
nances; and the resonant frequency of each
resonance.

If the foregoing is true, the following
helpful questions arise:

1) Why should one bother using different
diameter rods (or different width rectangu-
lar bars) in the filter?

2) Why should one waste the space to
put in rods #0 and #(#-+1) the only purpose
of which is to properly couple the resistive
generator and resistive load to the input and
output resonances, respectively?

The answer to the first question is ap-
parently that different diameter rods and
different width bars are used because the
presently available designs call for them.
Actually there are an infinite number of
correct diameter and spacing combinations,
and there is no need to use different di-
ameter rods (or different width bars) if the
filter is correctly designed and adjusted for
uniform diameter rods (or uniform width
bars). Section I1l gives the simple design
procedure involved.

The answer to the second question also
is that apparently rods #0 and #(n--1) are
used because the presently available designs
call for them. Actually in the bandwidth
regions considered in this correspondence
these rods are not required. In the less than
one percent bandwidth region, probe or loop
coupling of the generator to resonator #1,
and the load to resonator #n is practical;
and in the greater than one percent band-
width region, tapping of the generator onto
rod #1, and tapping of the load onto rod #n,
is a practical way of producing the required
singly loaded Q for the input and output
resonators. Section IV gives the simple
design procedure involved when tapping is
used.

I1. Tur CoEFFICIENT-OF-COUPLING
BETWEEN ADJACENT UNIFORM
DIAMETER RoDs

The definition of coefficient-of-coupling
(K) applicable to all small percentage band-
width coupled-resonator filters is given in
Section IV of [2]; also given there is a
straightforward experimental procedure for
accurately measuring and/or adjusting K.
This procedure applied to an actual filter
for which d/h=0.5 resulted in the three
cross-marked points on the graph of Fig. 1.
The K measured was that between two adja-~
cent rods which also had equally spaced
rods on their other sides; thus, equal far-
side coupling was involved.

Within their applicable ranges, either
Honey's closed-form equations for Z,, and
Zy [3), or Cristal’s graphs for Cp/¢ and
C/e [4] can be used to calculate the coeffi-
cient-of-coupling resulting from a given
geometry d/h and ¢/k. 1t should be noted
that the small percentage coupling case
herein considered is very forgiving of a
multitude of approximation sins, and per-
haps a proof of this is the fact that for the
less than 10 percent coupling case consid-
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ered herein, and for normalized rod di-
ameters less than d/2=0.5, both procedures
give “exactly,” i.e., within about 2 per cent,
the same numerical answers. If Honey's
approximation is used, (1) gives the K be-
tween a pair of rods

T ¢

o (%
n co 37

. W

—
In coth z —~>
ik

If Cristal's graphs are used, (2) is used
to obtain the A between a pair of rods

The graph of Fig. 1, giving the coeffi-
clent-of-coupling between two adjacent rods
as a function of normalized center to center
rod spacing ¢/k, and normalized rod di-
ameter d/k, results from an application of
either (1) or (2). The very excellent agree-
ment on Fig. 1 between the three experi-
mentally determined cross-marked points,
and the line for d/k=0.3, is gratifying.

As Fig. 1 indicates, in this region of in-
terest, the log of the coefficient-of-coupling
is almost a linear function of both the nor-
malized center to center spacing (¢/k#) and
the normalized rod diameter (d/k). A linear
equation approximating the straight, al-
most equally-spaced lines of Fig. 1 is given
in (3).

¢
logK = %«—1.37 (—)
og p

+0.91 (%) - 0048; G

1

As presented, the equations and graph of
Fig. 1 apply exactly only to the case of equal
(Cn/C) on each side of every equal diameter
rod. In a “modern network-theory filter”
this is, of course, not the case; however, for
small percentage couplings the foregoing
simple equations and graph can still be used
to design such an unequal G, filter, using
equal diameter rods, because of the following
fundamental fact: Fringing phenomenon is
such that, when the spacing between rods is
changed, the Y, of any one line with all other
lines short-circuited, e.g. (¥o,,+ Y.+ Yo,,),
changes negligibly; e.g., even with spacing
changes such that the resultant coefficient
of coupling changes from zero up to 10 per-
cent, there is less than 3 percent change in
this V%, even for d/h as large as 0.5. The
value of this essentially constant Y, is very
closely that for a single rod between parallel
gr(])und planes given by (4) (page 592 of
[51).

47
¥, = 1/138 log (— i) @)
x d

Thus, up to 10 percent couplings, the
factor (Cy/e 2C,/¢) in the denominator of
(2) is essentially independent of changes in
rod spacing; and to a first-order the numeri-
cal value for the corresponding numerator of
(2), ie. (Cn/e), is still obtainable from
Cristal’s Fig. 2 [4], even for unequally spaced
rods on each side of a given pair.

It should be noted that a graph similar
to Fig. 1 but differing by the factor 4/, has



